inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Ca₂CuTe₄O₁₀Cl₂, a new synthetic tellurium(IV) oxochloride

Rie Takagi and Mats Johnsson*

Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden Correspondence e-mail: matsj@inorg.su.se

Received 18 August 2005 Accepted 8 September 2005 Online 30 September 2005

Single crystals of dicalcium copper tetratellurium decaoxide dichloride, $Ca_2CuTe_4O_{10}Cl_2$, were synthesized *via* a transport reaction in sealed evacuated quartz glass tubes. The building units of the structure are irregular CaO_7 polyhedra, centrosymmetric CuO_4Cl_2 octahedra and two crystallographically distinct TeO_4E distorted bipyramids (*E* being the $5s^2$ lone pair of Te^{IV}). The TeO_4E and CuO_4Cl_2 polyhedra together form planes that are connected by the Ca atoms. The CuO_4Cl_2 octahedra are isolated from each other by the other building units.

Comment

Oxohalogenides comprising transition metals and elements having an asymmetric coordination due to the presence of stereochemically active lone pairs, such as Te^{IV}, Se^{IV}, As^{III} or Sb^{III}, have proved to be a very interesting family of compounds, in which there is a high probability of finding novel host-guest compounds, quantum spin systems and lowdimensional compounds (Johnsson et al., 2000, 2003, 2004). The lone-pair elements and the halogens constitute 'structural scissors', hindering the development of three-dimensional networks. In these kinds of oxohalogenide compounds, the lone-pair elements are coordinated only by oxygen, and the metal ions are coordinated by both oxygen and halogens. The synthesis strategy involves the use of the halogens Cl, Br and I but not F, as the latter is so electronegative that it will also bond to the lone-pair elements; the F atom may then constitute a bridge directly between the lone-pair element and a transition metal ion and thus will not act as 'scissors', and therefore do not contribute in forcing the transition metal ions to take low-dimensional arrangements in the crystal structures.

The present work is the outcome of an ongoing investigation of transition metal oxohalogenides containing alkaline earth elements and asymmetrically coordinated lone-pair elements. The crystal structures of a few compounds in this family have been described before [*e.g.* Ba₃Te₂O₆Cl₂ (Hottentot & Loopstra, 1983), Ba₂Co(SeO₃)₂Cl₂ (Johnston & Harrison, 2002), and $Ba_2Cu_4Te_4O_{11}Cl_4$ and $BaCu_2Te_2O_6Cl_2$ (Feger & Kolis, 1998)]. To our knowledge, the novel title compound, $Ca_2CuTe_4O_{10}Cl_2$, is the first oxohalogenide described with Ca^{II} in combination with Cu^{II} and Te^{IV} .

There are two crystallographically distinct Te atoms. Atom Te1 has a see-saw TeO₄ coordination to oxygen. When the stereochemically active $5s^2$ lone pair (designated E) is also taken into account, the coordination becomes a distorted TeO_4E trigonal bipyramid, where E is located in the equatorial plane. The bonding distances are in the range 1.841 (3)-2.206 (2) Å (Table 1). Atom Te2 has a threefold one-sided TeO₃ coordination, having Te-O bond distances in the range 1.867 (2)-1.932 (2) Å. A longer Te-O bond [Te2-O4 = 2.616 (3) Å] completes the see-saw coordination. Bondvalence-sum calculations (Brown & Altermatt, 1985) suggest that this long Te-O distance contributes to the bond valence and that these atoms therefore should be regarded as coordinated. Taking the stereochemically active lone pair into account, the coordination polyhedron becomes a $\text{TeO}_{3+1}E$ trigonal bipyramid for Te2, with the lone pair in the equatorial plane. Geometrically placing the lone pairs assuming a Te-Edistance (radius) of 1.25 Å (Galy et al., 1975) gives the fractional coordinates E1 (x = 0.3175, y = 0.4855, z = 0.2878) and E2 (x = -0.3943, y = 0.6409, z = 0.4123) for Te1 and Te2, respectively.

The Cu atom, located at a centre of symmetry, is coordinated by four O atoms in a square-planar configuration, with Cu–O distances in the range 1.945 (2)–2.017 (3) Å, and two Cl atoms complete a CuO₄Cl₂ octahedron, with Cu–Cl distances of 2.738 (2) Å. The Ca atom is coordinated by seven O atoms to form an irregular CaO₇ polyhedron. The Ca–O distances are in the range 2.330 (3)–2.583 (3) Å, except for the Ca–O5 distance, which is only 2.266 (3) Å. A long Ca–Cl distance of 3.379 (2) Å does not contribute significantly to the bond valence sum and the Cl atom is therefore not regarded as bonded.

Figure 1

The structure of Ca₂CuTe₄O₁₀Cl₂ is composed of layers formed by CuO₄Cl₂ octahedra, and Te1O₄*E* and Te2O₃₊₁*E* trigonal bipyramids that are connected by the Ca atoms (medium grey). Colour key: O atoms are white, Cl atoms are dark grey and the positions of the $5s^2$ lone pairs (*E*) on the Te atoms are marked as black spheres. The lone pairs and the Cl atoms are located in channels in the structure.

1487 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0269P)^2$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.0814P]

 $\Delta \rho_{\rm min} = -0.83 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 1.03 \text{ e} \text{ Å}^{-3}$

 $R_{\rm int}=0.046$

 $\theta_{\rm max} = 27.9^{\circ}$

 $h = -7 \rightarrow 7$

 $k = -9 \rightarrow 9$

 $l = -11 \rightarrow 11$

1381 reflections with $I > 2\sigma(I)$

An overview of the structure is shown in Fig. 1. The Te1O₄*E* and Te2O₃₊₁*E* polyhedra build infinite $[TeO_{2.5}]_n$ chains along [011] by corner sharing and edge sharing. The $[TeO_{2.5}]_n$ chains are linked by CuO₄Cl₂ octahedra *via* the Te₂O₃₊₁*E* polyhedra to form layers in the (011) plane (see Fig. 2). Each CuO₄Cl₂ octahedron shares edges with two CaO₇ polyhedra and with two Te2O₃₊₁*E* bipyramids, and corners with two more such bipyramids (see Fig. 3). Each CaO₇ polyhedron shares edges with two Te1O₄*E* and two Te2O₃₊₁*E* bipyramids, and corners with two more of each kind of Te polyhedron. The CaO₇ polyhedra also each share edges with two more CaO₇ polyhedra to build up [CaO₅]_n chains along [100]. The [CaO₅]_n chains link the Te–O–Cu–Cl layers to build up the three-dimensional structure and channels develop along [100], in

Figure 2

The Te1O₄*E* and the Te2O₃₊₁*E* polyhedra build up infinite $[TeO_{2.5}]_n$ chains along [011] by corner and edge sharing. The $[TeO_{2.5}]_n$ chains are linked by CuO₄Cl₂ octahedra to form layers in the (011) plane.

Figure 3

Each CuO_4Cl_2 octahedron shares edges with two $Te2O_{3+1}E$ bipyramids and corners with two more bipyramids of the same kind. Edges are also shared with two CaO_7 polyhedra. which the Cl atoms and the lone pairs (E) are located (see Fig. 1).

Experimental

Single crystals of Ca₂CuTe₄O₁₀Cl₂ were synthesized by chemical transport reactions in sealed evacuated quartz glass tubes. CaO (ABCR, 99.95%), CuCl₂ (Avocado Research Chemicals, +98%), CuO (Avocado Research Chemicals, +99%) and TeO₂ (ABCR, +99%) were mixed in the non-stoichiometric molar ratio 1:1:1:2 in a mortar and placed in a quartz glass tube (length ~5 cm), which was then evacuated. The tube was heated for 72 h at 900 K in a muffle furnace. The product appeared as bright-green plate-like single crystals and a powder of undetermined composition. The product of the synthesis was non-hygroscopic.

Crystal data

$Ca_2CuTe_4O_{10}Cl_2$	Z = 1		
$M_r = 885.00$	$D_x = 4.656 \text{ Mg m}^{-3}$		
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation		
a = 5.421 (2) Å	Cell parameters from 1170		
b = 7.266 (3) Å	reflections		
c = 8.717 (5) Å	$\theta = 1.9 - 28.1^{\circ}$		
$\alpha = 71.60 \ (6)^{\circ}$	$\mu = 12.07 \text{ mm}^{-1}$		
$\beta = 79.26 \ (6)^{\circ}$	T = 291 (2) K		
$v = 77.63 (5)^{\circ}$	Plate, green		
V = 315.6 (3) Å ³	$0.16 \times 0.14 \times 0.12 \text{ mm}$		

Data collection

Stoe IPDS diffractometer φ scan Absorption correction: numerical [*X-RED* (Stoe & Cie, 2001) and *X-SHAPE* (Stoe & Cie, 1999)] $T_{min} = 0.136, T_{max} = 0.234$ 4989 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.044$ S = 1.061487 reflections 88 parameters

Table 1

Selected interatomic distances (Å).

Te1-O5	1.841 (3)	Cu1-Cl1 ^v	2.738 (2)
Te1-O1 ⁱ	1.945 (3)	Ca1-O5 ^{vi}	2.266 (3)
Te1-O1	2.064 (2)	Ca1-O2	2.330 (3)
Te1-O3	2.206 (2)	Ca1-O1 ^v	2.353 (3)
Te2-O2	1.867 (2)	Ca1-O5	2.462 (3)
Te2-O4	1.910 (2)	Ca1-O3	2.575 (3)
Te2-O3 ⁱⁱ	1.932 (2)	Ca1-O4 ^{iv}	2.579 (3)
Te2-O4 ⁱⁱⁱ	2.616 (3)	Ca1-O3 ^{vii}	2.583 (3)
Cu1-O2	1.945 (2)	Ca1-Cl1 ^v	3.379 (2)
Cu1-O4 ^{iv}	2.017 (3)		

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z; (iii) -x - 1, -y + 2, -z + 1; (iv) x + 1, y, z; (v) x, y + 1, z; (vi) -x, -y + 2, -z; (vii) -x + 1, -y + 2, -z.

Two different diffraction data sets were recorded with the same crystal in different χ orientations. Scale factors for the individual data sets were computed with *SHELXL97* (Sheldrick, 1997) and finally the individual data sets were scaled and averaged with the program *REFLEX* (Eriksson, 2004). The O atoms were refined with isotropic displacement parameters.

Data collection: *EXPOSE* in *IPDS* (Stoe & Cie, 1997); cell refinement: *CELL* in *IPDS*; data reduction: *INTEGRATE* in *IPDS*;

inorganic compounds

program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *SHELXL97*.

This work has been carried out in part through financial support from the Swedish Research Council.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1512). Services for accessing these data are described at the back of the journal.

References

Bergerhoff, G. (1996). *DIAMOND*. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.

- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Eriksson, L. (2004). REFLEX. Stockholm University, Sweden.
- Feger, C. R. & Kolis, J. W. (1998). Inorg. Chem. 37, 4046-4051.
- Galy, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142–159.
- Hottentot, D. & Loopstra, B. O. (1983). Acta Cryst. C39, 1600-1602.
- Johnsson, M., Lidin, S., Törnroos, K. W., Bürgi, H.-B. & Millet, P. (2004). Angew. Chem. Int. Ed. 43, 4292–4295.
- Johnsson, M., Törnroos, K. W., Lemmens, P. & Millet, P. (2003). Chem. Mater. 15, 68–73.
- Johnsson, M., Törnroos, K. W., Mila, F. & Millet, P. (2000). Chem. Mater. 12, 2853–2857.
- Johnston, M. G. & Harrison, W. T. A. (2002). Acta Cryst. E58, i49-i51.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1997). IPDS. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1999). X-SHAPE. Revision 1.06. Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe & Cie (2001). X-RED. Version 1.22. Stoe & Cie GmbH, Darmstadt, Germany.